|
|
|
|
LEADER |
02890nam a2200241 a 4500 |
003 |
AR-SmUSM |
005 |
20211118141354.0 |
008 |
190310s1962 xxu|||||||||||||1 ||eng d |
040 |
|
|
|a AR-SmUSM
|b spa
|c AR-SmUSM
|
082 |
0 |
|
|a 519.2
|b K446 1962
|2 22
|
100 |
1 |
|
|a Keynes, John Maynard,
|d 1883-1946
|9 45441
|
245 |
1 |
2 |
|a A treatise on probability /
|c John Maynard Keynes ; introduction by Norwood Russell Hanson.
|
260 |
|
|
|a New York :
|b Harper Torchbooks,
|c 1962.
|
300 |
|
|
|a xx, 466 p. ;
|c 21 cm.
|
490 |
0 |
|
|a The science library
|
504 |
|
|
|a Incluye referencias bibliográficas (p. 429-458) e índice.
|
505 |
0 |
|
|a 1. The meaning of probability. -- 2. Probability in relation to the theory of knowledge. -- 3. The measurement of probabilities. -- 4. The principle of indifference. -- 5. Other methods' of determining probabilities. -- 6. The weight of arguments. -- 7. Historical retrospect. -- 8. The frequency theory of probability. -- 9. The constructive theory of part I. summarized. -- 10. Introductory. -- 11. The theory of groups, with special reference to logical consistence, inference and logical priority. -- 12. The definitions and axioms of inference and probability. -- 13. The fundamental theorems of necessary inference. -- 14. The fundamental theorems of probable inference. -- 15. Numerical measurement and approximation of probabilities. -- 16. Observations on the theorems of chapter 14 and their developments, inclundg testimony. -- 17. Some problems in inverse Probability, including Averages. -- 18. Introduction. -- 19. The Nature of Argument by analogy. -- 20. The value of multiplication of instances, or pure induction. -- 21. The nature of inductive argument continued. -- 22. The justification of these methods. -- 23. Some historical notes on induction. -- 24. The meanings of objective chance, and of randomness. -- 25. Some problems arising out of the discussion of chance. -- 26. The application of probability to conduct. -- 27. The nature of statistical inference. -- 28. The law of great numbers. -- 29. The use of a priori probabilities for the prediction of statistical frequency - the theorems of Bernoulli, Poisson, and Tchebycheff. -- 30. The mathematical use of statistical frequencies for the determination of probability a posteriori - the methods of laplace. -- 31. The inversion of Bernoulli´s Theorem. -- 32. The inductive use of statistical frequencies for the determination of probability a posteriori - the Methods of Lexis. -- 33. Outline of a constructive theory.
|
595 |
|
|
|d 3367
|e 29/08/2013
|f 6024 EYN
|
650 |
|
7 |
|a Estadística.
|2 unesco
|9 3678
|
650 |
|
7 |
|a Teoría de las probabilidades
|2 unesco
|9 1658
|
942 |
|
|
|2 ddc
|c LIBRO
|
952 |
|
|
|0 0
|1 0
|2 ddc
|4 0
|6 519_200000000000000_K446_1962
|7 1
|8 GRAL
|9 81349
|a EEyN
|b EEyN
|d 2019-03-30
|e Donación
|o 519.2 K446 1962
|p D6024
|r 2019-03-30 00:00:00
|w 2019-03-30
|y LIBRO
|i 6024 EYN
|
999 |
|
|
|c 55887
|d 55887
|